Archief voor de rubidium-categorie

The Atomic Clock Wetenschappelijke precisie

Vrijdag, februari 5th, 2010

Precisie wordt steeds belangrijker in moderne technologieën en niet meer dan nauwkeurigheid in tijdbewaking. Van internet tot satellietnavigatie is nauwkeurige en accurate synchroniciteit van vitaal belang in de moderne tijd.

In feite zouden veel van de technologieën die we als vanzelfsprekend beschouwen in de wereld van vandaag, niet mogelijk zijn als het niet voor de meest accurate machines was die werden uitgevonden - de atoomklok.

Atoomklokken zijn slechts tijdwaarnemingsapparatuur zoals andere klokken of horloges. Maar wat hen onderscheidt, is de nauwkeurigheid die ze kunnen bereiken. Als een primitief voorbeeld zal uw standaard mechanische klok, zoals een klokkentoren in het stadscentrum, met maar liefst een seconde per dag afdrijven. Elektronische klokken zoals digitale horloges of klokradio's zijn nauwkeuriger. Dit soort klok zweeft een seconde in ongeveer een week.

Wanneer u echter de precisie van een atoomklok vergelijkt, waarbij een seconde niet verloren gaat of wint in 100,000 jaren of meer, is de nauwkeurigheid van deze apparaten onvergelijkbaar.

Atoomklokken kunnen deze nauwkeurigheid bereiken door de oscillatoren die ze gebruiken. Bijna alle soorten klokken hebben een oscillator. Over het algemeen is een oscillator slechts een circuit dat regelmatig tikt.

Mechanische klokken gebruiken slingers en veren om een ​​regelmatige oscillatie te bieden, terwijl elektronische klokken een kristal hebben (meestal kwarts) dat, wanneer een elektrische stroom wordt doorlopen, een nauwkeurig ritme geeft.

Atoomklokken gebruiken de oscillatie van atomen tijdens verschillende energietoestanden. Vaak wordt cesium 133 (en soms rubidium) gebruikt omdat de hyperfijne overgangsoscillatie meer dan 9 miljard keer per seconde (9,192,631,770) bedraagt ​​en dit verandert nooit. In feite is de Internationaal systeem van eenheden (SI) beschouwt nu officieel een seconde in de tijd als 9,192,631,770-cycli van straling van het cesiumatoom.

Atoomklokken vormen de basis voor 's werelds wereldwijde tijdschaal - UTC (Coordinated Universal Time). En computernetwerken over de hele wereld blijven synchroon door het gebruik van tijdsignalen uitgezonden door atoomklokken en opgepikt NTP tijdservers (Network Time Server).

Rubidium-oscillatoren Aanvullende precisie voor NTP-server (deel 2)

Zaterdag, januari 9th, 2010

Wordt vervolgd ...

Er zijn echter enkele gelegenheden waarbij een tijdserver de verbinding met de atoomklok kan verliezen en de tijdcode niet gedurende een langere periode kan ontvangen. Soms kan dit komen door downtime door de atoomklokbesturing voor onderhoud of dat storing in de nabije omgeving de transmissie blokkeert.

Het is duidelijk dat hoe langer het signaal lager is, des te meer potentiële drift op het netwerk kan optreden als de kristaloscillator in de NTP-server is het enige dat tijd aanhoudt. Voor de meeste toepassingen zou dit nooit een probleem mogen zijn, aangezien de meest langdurige periode van downtime normaal niet langer is dan drie of vier uur en de NTP-server in die tijd niet veel zou zijn afgedreven en het optreden van deze downtime vrij zeldzaam is (misschien een keer of twee keer per jaar).

Voor sommige ultra precieze high-end toepassingen worden echter rubidium-kristaloscillatoren gebruikt, omdat deze niet zo veel drijven als kwarts. Rubidium (vaak gebruikt in atoomklokken zelf in plaats van cesium) is veel nauwkeuriger een oscillator dan kwarts en verstrekt betere nauwkeurigheid voor wanneer er geen signaal aan a is NTP tijdserver zodat het netwerk een nauwkeurigere tijd kan aanhouden.

Rubidium zelf is een alkalimetaal, vergelijkbaar in eigenschappen met kalium. Het is zeer licht radioactief, hoewel het geen risico vormt voor de gezondheid van de mens (en wordt vaak gebruikt in beeldvorming van medicijnen door het in een patiënt te injecteren). Het heeft een halfwaardetijd van 49 miljard jaar (de tijd die nodig is om te vervallen met de helft - in vergelijking met sommige van de meest dodelijke radioactieve materialen hebben halfwaardetijden van minder dan een seconde).

Het enige echte gevaar van rubidium is dat het nogal heftig reageert op water en brand kan veroorzaken

Rubidium-oscillatoren Aanvullende precisie voor NTP-server (deel 1)

Donderdag, januari 7th, 2010

Oscillatoren zijn essentieel geweest in de ontwikkeling van klokken en chronologie. Oscillatoren zijn slechts elektronische circuits die een repetitief elektronisch signaal produceren. Vaak worden kristallen zoals kwarts gebruikt om de frequentie van de oscillatie te stabiliseren,

Oscillatoren zijn de primaire technologie achter elektronische klokken. Digitale horloges en analoge klok met batterijvoeding worden allemaal bestuurd door een oscillerend circuit dat meestal een kwartskristal bevat.

En hoewel elektronische klokken vele malen nauwkeuriger zijn dan een mechanische klok, zal een kwartsoscillator elke week een seconde of twee afdrijven.

Atoomklokken natuurlijk zijn veel nauwkeuriger. Ze gebruiken echter nog steeds oscillatoren, meestal cesium of rubidium, maar ze doen dit in een hyperfijne toestand vaak bevroren in vloeibare stikstof of helium. Deze klokken in vergelijking met elektronische klokken zullen in geen miljoen jaar tijd met een seconde afdrijven (en met de modernere atoomklokken 100 miljoen jaar).

Om deze chronologische nauwkeurigheid te gebruiken een netwerktijdserver die gebruikt NTP (Network Time Protocol) kan worden gebruikt om volledige computernetwerken te synchroniseren. NTP-servers gebruik een tijdsignaal van een GPS- of langegolfradio die rechtstreeks van een atoomklok komt (in het geval van GPS wordt de tijd gegenereerd in een klok aan boord van de GPS-satelliet).

NTP-servers controleer deze bron van tijd voortdurend en pas vervolgens de apparaten in een netwerk aan om die tijd aan te passen. Tussen polls (ontvangst van de tijdbron) wordt door de tijdserver een standaardoscillator gebruikt om de tijd te houden. Normaal gesproken zijn deze oscillatoren kwarts maar omdat de tijdserver in regelmatige communicatie met de atoomklok elke minuut of twee zegt, is de normale drift van een kwartsoscillator geen probleem, omdat een paar minuten tussen peilingen niet tot een meetbare drift zou leiden.

Wordt vervolgd ...