Archief voor de categorie 'kwantumfysica'

Tijd- en frequentieoverdracht gebruiken om een ​​computernetwerk te synchroniseren

Vrijdag, februari 13th, 2009

Computersynchronisatie wordt vaak gezien als een hoofdpijn voor veel systeembeheerders, maar nauwkeurige tijd bijhouden is van essentieel belang voor elk netwerk om veilig en betrouwbaar te blijven. Het ontbreken van een nauwkeurig gesynchroniseerd netwerk kan leiden tot allerlei fouten bij het verwerken van tijdgevoelige transacties.

Het protocol NTP (Network Time Protocol) is de industriestandaard voor tijdsynchronisatie. NTP distribueert een bron met één tijd naar een volledig netwerk, zodat alle machines exact dezelfde tijd draaien.

Een van de meest problematische gebieden bij het synchroniseren van een netwerk is de selectie van de tijdsbron. Het is duidelijk dat als je tijd besteedt aan het synchroniseren van een netwerk, de tijdbron een UTC moet zijn (Coordinated Universal Time) omdat dit de wereldwijde tijdschaal is die door computernetwerken over de hele wereld wordt gebruikt.

UTC is natuurlijk beschikbaar op internet, maar internettijdbronnen zijn niet alleen notoir onnauwkeurig, maar als internet als tijdbron wordt gebruikt, blijft het computersysteem open voor beveiligingsbedreigingen, aangezien de bron zich buiten de firewall bevindt.

Een veel betere en veiligere methode is om een ​​dedicated te gebruiken NTP tijdserver. De NTP-server zit in de firewall en kan een veilig tijdsignaal ontvangen van zeer nauwkeurige bronnen. De meest gebruikte tegenwoordig is het GPS-netwerk (Global Positioning System), dit komt omdat het GPS-systeem letterlijk overal op de planeet beschikbaar is. Helaas heeft het een duidelijk zicht op de lucht nodig om het te verzekeren GPS NTP-server kan de satelliet 'zien'.

Er is echter nog een ander alternatief en dat is om de nationale tijd- en frequentie-uitzendingen te gebruiken die worden uitgezonden door verschillende nationale fysica laboratoria. Deze hebben als voordeel dat ze, omdat ze lange golfsignalen zijn, binnen kunnen worden ontvangen. Hoewel opgemerkt moet worden dat deze signalen niet in elk land worden uitgezonden en dat het bereik eindig is en vatbaar is voor interferentie en geografische kenmerken.

Enkele van de uitzendingen van de belangrijkste uitzendingen staan ​​bekend als: de UK's Artsen Zonder Grenzen signaal, Duitsland DCF-77 en de VS. wwvb.

The Atomic Clock en de Network Time Server

Zondag, januari 25th, 2009

Procedure

U ontvangt een e-mail van STO Garant (info@sto-garant.nl) met informatie over het voldoen van de betaling voor uw boeking. Voor alle boekingen geldt dat het volledige boekingsbedrag voor aanvang van de boeking betaald dient te zijn aan de derdengeldenrekening. atoomklok is het hoogtepunt van de obsessie van de mensheid om nauwkeurige tijd te vertellen. Vóór de atoomklok en de nauwkeurigheid van de nanoseconde waren de tijdschalen gebaseerd op de hemellichamen.

Dankzij de ontwikkeling van de atoomklok is nu echter gerealiseerd dat zelfs de aarde in haar rotatie niet zo nauwkeurig is als een maat van tijd atoomklok omdat het elke dag een fractie van een seconde verliest of wint.

Vanwege de noodzaak om een ​​tijdschema te hebben dat enigszins is gebaseerd op de rotatie van de aarde (astronomie en landbouw zijn twee redenen), een tijdschaal die wordt bijgehouden door atoomklokken maar aangepast voor elke vertraging (of versnelling) in de draaiing van de aarde. Deze tijdschaal staat bekend als GMT (Coordinated Universal Time) zoals overal ter wereld gebruikt om ervoor te zorgen dat handel en handel op hetzelfde moment worden gebruikt.

Computernetwerken gebruiken netwerk tijdservers om te synchroniseren met UTC-tijd. Veel mensen noemen deze tijdservers als atoomklokken, maar dat is niet accuraat. Atoomklokken zijn extreem dure en uiterst gevoelige apparatuur en zijn meestal alleen te vinden in universiteiten of nationale fysicalaboratoria.

Gelukkig houden nationale laboratoria van natuurkunde dat wel NIST (National Institute for Standards and Time - USA) en NPL (National Physical Laboratory - UK) bracht het tijdsignaal van hun atoomklokken uit. Als alternatief is het GPS-netwerk een andere goede bron van nauwkeurige tijd aangezien elke GPS-satelliet zich aan boord bevindt atoomklok.

Procedure

U ontvangt een e-mail van STO Garant (info@sto-garant.nl) met informatie over het voldoen van de betaling voor uw boeking. Voor alle boekingen geldt dat het volledige boekingsbedrag voor aanvang van de boeking betaald dient te zijn aan de derdengeldenrekening. netwerktijdserver ontvangt de tijd van een atoomklok en distribueert deze met behulp van een protocol zoals NTP (Network Time Protocol) waardoor het computernetwerk op hetzelfde moment wordt gesynchroniseerd.

Omdat netwerk tijdservers worden bestuurd door atoomklokken, ze kunnen ongelooflijk nauwkeurige tijd bijhouden; geen seconde verliezen in honderden, zo niet duizenden jaren. Dit zorgt ervoor dat het computernetwerk zowel veilig is als ongevoelig voor tijdfouten, omdat alle machines exact dezelfde tijd hebben.

De NTP-server en inzicht in tijdschalen

Maandag, januari 19th, 2009

Er zijn verschillende tijdschalen gebruikt over de hele wereld. Meest NTP-servers en andere netwerk tijdservers gebruik UTC als basisbron, er zijn echter andere:

Wanneer ons de tijd wordt gevraagd dat het zeer onwaarschijnlijk is, zouden we antwoorden met 'voor welke tijdschaal', maar er zijn verschillende tijdschalen gebruikt over de hele wereld en elk is gebaseerd op verschillende methoden om de tijd bij te houden.
GMT

Greenwich Mean Time (GMT) is de lokale tijd op de meridiaan van Greenwich op basis van de hypothetische gemiddelde zon. Omdat de baan van de aarde elliptisch is en de as is gekanteld, lijkt de werkelijke positie van de zon tegen de achtergrond van sterren iets voor of achter de verwachte positie. De geaccumuleerde timingfout varieert in de loop van het jaar op een soepel periodieke manier met tot 14 minuten traag in februari tot 16 minuten snel in november. Het gebruik van een hypothetische gemiddelde zon verwijdert dit effect. Voordat 1925-astronomen en navigators GMT gemeten van 's middags tot' s middags, startte de dag 12 uur later dan in het civiele gebruik dat ook vaak GMT werd genoemd. Om verwarring te voorkomen, besloten astronomen in 1925 om het referentiepunt te veranderen van 12.00 uur 's middags tot middernacht en een paar jaar later werd de term Universal Time (UT) voor de "nieuwe" GMT aangenomen. GMT blijft de wettelijke basis van de burgerlijke tijd voor het VK.

UT

Universele tijd (UT) is gemiddelde zonnetijd op de meridiaan van Greenwich met 0 h UT op gemiddelde middernacht en sinds 1925 GMT heeft vervangen voor wetenschappelijke doeleinden. Door de mid-1950s hadden astronomen veel bewijs van fluctuaties in de rotatie van de aarde en besloten om de UT in drie versies te verdelen. De tijd die rechtstreeks uit observaties is afgeleid, wordt UT0 genoemd, correcties toepassen op bewegingen van de aardas of polaire beweging geeft UT1, en het verwijderen van periodieke seizoensvariaties genereert UT2. De verschillen tussen UT0 en UT1 liggen in de orde van duizendsten van een seconde. Tegenwoordig wordt alleen UT1 nog steeds op grote schaal gebruikt omdat het een maat geeft voor de rotatie-oriëntatie van de aarde in de ruimte.


De wereldtijdstandaard
(GMT):

Hoewel TAI een continue, uniforme en precieze tijdsschaal biedt voor wetenschappelijke referentiedoeleinden, is deze niet geschikt voor dagelijks gebruik omdat deze niet in de pas loopt met de rotatiesnelheid van de aarde. Een tijdschaal die overeenkomt met de afwisseling van dag en nacht is veel nuttiger, en sinds 1972 verspreiden alle uitzendtijdservices tijdschalen op basis van Coordinated Universal Time (UTC). UTC is een atomische tijdschaal die in overeenstemming wordt gehouden met Universal Time. Sprong seconden zijn af en toe

Informatie met dank aan de National Physical Laboratory UK.

NTP-serverconfiguratie voor Windows en Linux

Zondag, januari 4th, 2009

Network Time Protocol is ontwikkeld om computers gesynchroniseerd te houden. Alle computers zijn gevoelig voor drift en nauwkeurige timing is essentieel voor veel tijdkritische applicaties.

Een versie van NTP is geïnstalleerd op de meeste versies van Windows (hoewel een uitgeklede versie genaamd SNTP -Splified NTP- zich in oudere versies bevindt) en Linux, maar is gratis te downloaden van NTP.org.

Bij het synchroniseren van een netwerk verdient het de voorkeur om een ​​toegewezen netwerk te gebruiken NTP-server die een timingbron ontvangt van een atoomklok ofwel via gespecialiseerde radio-uitzendingen of de GPS-netwerk. Er zijn echter veel internettijdreferenties beschikbaar, sommige betrouwbaarder dan andere, hoewel moet worden opgemerkt dat op internet gebaseerde tijdbronnen niet door NTP kunnen worden geverifieerd, waardoor uw computer kwetsbaar blijft voor bedreigingen.

NTP is hiërarchisch en gerangschikt in stratum. Stratum 0 is timingreferentie, terwijl stratum 1 een server is die is verbonden met een stratum 0-timingbron en een stratum 2 een computer (of apparaat) is die is aangesloten op een stratum 1-server.

De basisconfiguratie van NTP wordt gedaan met behulp van het bestand /etc/ntp.conf dat u moet bewerken en plaats het IP-adres van stratum 1 en stratum 2-servers. Hier is een voorbeeld van een standaard ntp.conf bestand:

server xxx.yyy.zzz.aaa geeft de voorkeur (tijdserveradres zoals time.windows.com)

123.123.1.0 server

server 122.123.1.0 stratum 3

Driftbestand / etc / ntp / drift

Het meest elementaire ntp.conf-bestand bevat een lijst met 2-servers, een die het ook wil synchroniseren en een IP-adres voor zichzelf. Het is een goede huishouding om meer dan één server als referentie te hebben voor het geval er eentje uitvalt.

Een server met de tag 'prefer' wordt gebruikt voor een vertrouwde bron, zodat NTP altijd die server zal gebruiken wanneer dat mogelijk is. Het IP-adres zal worden gebruikt in geval van problemen wanneer NTP synchonise met zichzelf is. Het driftbestand is de plaats waar NTP een record opbouwt van de driftsnelheid van de systeemklok en deze automatisch aanpast.

NTP past je systeemtijd aan maar slechts langzaam. NTP wacht ten minste tien pakketten met informatie af voordat de bron wordt vertrouwd. Om NTP te testen, verandert u aan het eind van de dag uw systeemklok met een half uur en moet de tijd in de ochtend correct zijn.

Atomic Clock Synchronization met WWVB

Vrijdag, januari 2nd, 2009

Nauwkeurige tijd gebruik Atomic Klokken is beschikbaar in Noord-Amerika met behulp van de WWVB Atoomkloktijd signaal verzonden vanuit Fort Collins, Colorado; het biedt de mogelijkheid om de tijd op computers en andere elektrische apparatuur te synchroniseren.

Het Noord-Amerikaanse WWVB-signaal wordt beheerd door NIST - het National Institute of Standards and Technology. WWVB heeft een hoog zendvermogen (50,000 watt), een zeer efficiënte antenne en een extreem lage frequentie (60,000 Hz). Ter vergelijking, een typisch AM-radiostation zendt uit met een frequentie van 1,000,000 Hz. De combinatie van hoog vermogen en lage frequentie geeft de radiogolven van WWVB veel bounce, en dit enkele station kan daarom de hele continentale Verenigde Staten bestrijken, plus een groot deel van Canada en Midden-Amerika.

De tijdcodes worden verzonden vanaf WWVB met behulp van een van de eenvoudigste systemen die mogelijk is, en tegen een zeer lage gegevenssnelheid van één bit per seconde. Het 60,000 Hz-signaal wordt altijd verzonden, maar elke seconde wordt het aanzienlijk minder energie gedurende een periode van 0.2, 0.5 of 0.8 seconden: • 0.2 seconden met verlaagd vermogen betekent een binaire nulwaarde • 0.5 seconden met verminderd vermogen is een binaire nul. • 0.8 seconden met verminderd vermogen is een scheidingsteken. De tijdcode wordt verzonden in BCD (Binary Coded Decimal) en geeft minuten, uren, dag van het jaar en jaar aan, samen met informatie over zomertijd en schrikkeljaren.

De tijd wordt verzonden met behulp van 53-bits en 7-scheidingstekens en duurt daarom 60 seconden om te verzenden. Een klok of horloge kan een extreem kleine en relatief eenvoudige antenne en ontvanger bevatten om de informatie in het signaal te decoderen en de tijd van de klok nauwkeurig in te stellen. Het enige dat u hoeft te doen, is de tijdzone instellen en de atoomklok geeft de juiste tijd weer.

Toegewijd NTP tijdservers die zijn afgestemd om het WWVB-tijdsignaal te ontvangen zijn beschikbaar. Deze apparaten verbinden oa een computernetwerk zoals elke andere server, alleen deze ontvangen het timingsignaal en distribueren het naar andere machines op het netwerk met behulp van NTP (Network Time Protocol).

Atomic Clocks The Future of Time

Zaterdag, december 13th, 2008

Methoden om de tijd bij te houden zijn in de loop van de geschiedenis veranderd met steeds grotere nauwkeurigheid en zijn de katalysator voor verandering.

De meeste tijdwaarnemingsmethoden zijn van oudsher gebaseerd op de beweging van de aarde rond de zon. Voor millennia is een dag verdeeld in 24 gelijke delen die bekend zijn geworden als uren. Onze tijdsschema's baseren op de rotatie van de aarde is voldoende geweest voor de meeste van onze historische behoeften, maar naarmate de technologie vordert, is de behoefte aan een steeds accurater tijdsschema duidelijk gebleken.

Het probleem met de traditionele methoden werd duidelijk toen de eerste echt nauwkeurige uurwerken - de atoomklok werd ontwikkeld in de 1950's. Omdat deze uurwerken gebaseerd waren op de frequentie van atomen en binnen een seconde om de miljoen jaar nauwkeurig waren, werd al snel ontdekt dat onze dag, die we altijd hadden verondersteld precies 24-uren te zijn, van dag tot dag veranderde.

De invloed van de zwaartekracht van de Maan op onze oceanen zorgt ervoor dat de aarde vertraagt ​​en versnelt tijdens haar rotatie - sommige dagen zijn langer dan 24 uur terwijl andere korter zijn. Hoewel deze kleine verschillen in de lengte van een dag weinig verschil hebben gemaakt voor ons dagelijks leven, heeft deze onnauwkeurigheid consequenties voor veel van onze moderne technologieën zoals satellietcommunicatie en wereldwijde positionering.

Er is een tijdschaal ontwikkeld om de onnauwkeurigheden in de draaiing van de aarde - Coordinated Universal Time (UTC) aan te pakken. Het is gebaseerd op de traditionele 24-uur-aardrotatie die bekend staat als Greenwich Meantime (GMT), maar houdt rekening met de onnauwkeurigheden in de draaiing van de aarde door zogenaamde 'sprongseconden' toe te voegen (of af te trekken).

Aangezien UTC is gebaseerd op de tijd die wordt verteld door atoomklokken het is ongelooflijk accuraat en is daarom aangenomen als de civiele tijdschaal van de wereld en wordt wereldwijd door bedrijven en bedrijven gebruikt.

De meeste computernetwerken kunnen worden gesynchroniseerd met UTC door middel van een toegewezen NTP tijdserver.

Atoomklokken en de NTP-server gebruiken kwantummechanica om de tijd te voorspellen

Donderdag, december 11th, 2008

Het vertellen van de tijd is niet zo eenvoudig als de meeste mensen denken. In feite de vraag, 'wat is de tijd?' is een vraag die zelfs de moderne wetenschap niet kan beantwoorden. De tijd is volgens Einstein relatief; het is veranderingen doorgeven voor verschillende waarnemers, beïnvloed door dingen als snelheid en zwaartekracht.

Zelfs als we allemaal op dezelfde planeet leven en het verstrijken van de tijd op een vergelijkbare manier ervaren, kan het steeds moeilijker worden om de tijd te vertellen. Onze oorspronkelijke methode om de rotatie van de aarde te gebruiken, is sindsdien onnauwkeurig bevonden omdat de zwaartekracht van de maan ervoor zorgt dat sommige dagen langer zijn dan 24 uur en een paar korter. In feite, toen de vroege dinosaurussen door de aarde zwierven, was een dag slechts 22 uren lang!

Hoewel mechanische en elektronische klokken ons een zekere nauwkeurigheid hebben verschaft, hebben onze moderne technologieën veel nauwkeuriger tijdmetingen vereist. GPS, internethandel en luchtverkeersleiding zijn slechts drie bedrijfstakken verdeeld. De tweede timing is ongelooflijk belangrijk.

Dus hoe houden we de tijd bij? Het gebruik van de rotatie van de aarde is onbetrouwbaar gebleken, terwijl elektrische oscillatoren (kwartsklokken) en mechanische klokken slechts tot op een seconde of twee per dag nauwkeurig zijn. Helaas voor veel van onze technologieën kan een tweede onnauwkeurigheid veel te lang zijn. Bij satellietnavigatie kan het licht 300,000 km afleggen in iets meer dan een seconde, waardoor de gemiddelde sat-nav-eenheid nutteloos is als er één seconde onnauwkeurigheid was.

De oplossing voor het vinden van een nauwkeurige methode om tijd te meten, was het onderzoeken van de zeer kleine - kwantummechanica. Kwantummechanica is de studie van het atoom en zijn eigenschappen en hoe deze op elkaar inwerken. Er werd ontdekt dat elektronen, de kleine deeltjes die baanatomen zijn, het pad veranderden dat ze omlopen en een precieze hoeveelheid energie vrijgeven wanneer ze dat doen.

In het geval van het cesiumatoom gebeurt dit bijna negen miljard keer per seconde en dit aantal verandert nooit en kan dus worden gebruikt als een uiterst betrouwbare methode om de tijd bij te houden. Cesium-atomen zijn din-atoomklokken en in feite is de tweede nu gedefinieerd als iets meer dan 9 miljard cycli van straling van het cesiumatoom.

Atoomklokken
zijn de basis voor veel van onze technologieën. De hele wereldeconomie vertrouwt erop met de tijd gerelayeerd door NTP tijdservers op computernetwerken of gestraald door GPS-satellieten; ervoor zorgen dat de hele wereld dezelfde, nauwkeurige en stabiele tijd behoudt.

Een officiële wereldwijde tijdschaal, Coordinated Universal Time (UTC), is ontwikkeld dankzij de atoomklokken waarmee de hele wereld tegelijkertijd binnen enkele duizendsten van een seconde van elkaar kan lopen.

Houden van tijd met de rest van de wereld

Maandag, december 8th, 2008

A tijdserver is een veelvoorkomende kantoor-tool, maar waar is het voor?

We zijn allemaal gewend om een ​​andere tijd te hebben dan de rest van de wereld. Wanneer Amerika wakker wordt, gaat Honk Kong naar bed en daarom is de wereld verdeeld in tijdzones. Zelfs in dezelfde tijdzone kunnen er nog steeds verschillen zijn. Op het vasteland van Europa bijvoorbeeld, bevinden de meeste landen zich een uur voor op het Verenigd Koninkrijk vanwege de seizoensklokwisselingen in Groot-Brittannië.

Als het echter om wereldwijde communicatie gaat, kan het hebben van verschillende tijden over de hele wereld problemen veroorzaken, vooral als u tijdgevoelige transacties moet uitvoeren, zoals het kopen of verkopen van aandelen.

Voor dit doel was het door de vroege 1970 duidelijk dat een wereldwijde tijdschaal vereist was. Het werd geïntroduceerd op 1 januari 1972 en werd genoemd GMT - Coordinated Universal Time. UTC wordt bewaard door een atoomklok, maar is gebaseerd op Greenwich Meantime (GMT - vaak UT1 genoemd), dat zelf een tijdschaal is gebaseerd op de rotatie van de aarde. Helaas varieert de aarde in zijn draai, dus UTC verklaart dit door een of twee keer per jaar een seconde toe te voegen (Leap Second).

Hoewel het voor velen controversieel is, zijn schrikkelseconden nodig door astronomen en andere instellingen om te voorkomen dat de dag afdrijft, anders zou het onmogelijk zijn om de positie van de sterren aan de nachtelijke hemel te bepalen.

UTC wordt nu over de hele wereld gebruikt. Het is niet alleen de officiële wereldwijde tijdschaal, maar wordt gebruikt door honderdduizenden computernetwerken over de hele wereld.

Computernetwerken gebruiken a netwerktijdserver om alle apparaten in een netwerk te synchroniseren met UTC. De meeste tijdservers gebruiken het protocol NTP (Network Time Protocol) om tijd te verdelen.

NTP-tijdservers ontvangen de tijd van atoomklokken door langegolfradiozenders van nationale fysicalaboratoria of van het GPS-netwerk (Global Positioning System). GPS-satellieten hebben allemaal een ingebouwde atoomklok die de tijd terug naar de aarde bundelt. Hoewel dit tijdsignaal niet strikt gesproken UTC is (het staat bekend als GPS-tijd) vanwege de nauwkeurigheid van de verzending, wordt het gemakkelijk geconverteerd naar UTC door een GPS NTP-server.

Hoe een atoomklok werkt

Vrijdag, december 5th, 2008

Atoomklokken worden gebruikt voor duizenden toepassingen over de hele wereld. Van het bedienen van satellieten tot zelfs het synchroniseren van een computernetwerk met behulp van een NTP-server, atoomklokken hebben de manier veranderd waarop we de tijd controleren en besturen.

Qua nauwkeurigheid is een atoomklok ongekend. Digitale quartz klokken kunnen een week nauwkeurig zijn en niet meer dan een seconde verliezen, maar een atoomklok kan miljoenen jaren lang de tijd bijhouden zonder te zwerven.

Atoomklokken werken aan het principe van kwantumsprongen, een tak van de kwantummechanica die stelt dat een elektron; een negatief geladen deeltje, cirkelt in een bepaalde vlakte of niveau rond in een kern van een atoom (het midden). Wanneer het voldoende energie absorbeert of vrijgeeft in de vorm van elektromagnetische straling, zal het elektron naar een ander vlak springen - de kwantumsprong.

Door de frequentie van de elektromagnetische straling te meten die overeenkomt met de overgang tussen de twee niveaus, kan het verstrijken van de tijd worden geregistreerd. Cesium-atomen (cesium 133) hebben de voorkeur voor timing omdat ze 9,192,631,770-stralingstralen hebben in elke seconde. Omdat de energieniveaus van het cesiumatoom (de kwantumstandaarden) altijd hetzelfde zijn en zo hoog zijn, is de cesium-atoomklok ongelooflijk precies.

De meest voorkomende vorm van atoomklok die tegenwoordig in de wereld wordt gebruikt, is de cesiumfontein. In dit type klok wordt een wolk van atomen naar een magnetronkamer geprojecteerd en kan deze onder zwaartekracht vallen. Laserstralen vertragen deze atomen naar beneden en de overgang tussen de energieniveaus van het atoom wordt gemeten.

De volgende generatie atoomklokken worden ontwikkeld, gebruik ion-vallen in plaats van een fontein. Ionen zijn positief geladen atomen die kunnen worden ingesloten door een magnetisch veld. Andere elementen zoals strontium worden gebruikt in deze volgende generatie klokken en er wordt geschat dat de potentiële nauwkeurigheid van een strontium ion trap klok 1000 maal die van de huidige atoomklokken kan zijn.

Atoomklokken worden gebruikt door allerlei technologieën; satellietcommunicatie, het Global Positioning System en zelfs de handel via internet is afhankelijk van atoomklokken. De meeste computers worden indirect gesynchroniseerd met een atoomklok door a te gebruiken NTP-server. Deze apparaten ontvangen de tijd van een atoomklok en verspreiden zich over hun netwerken, wat een precieze tijd op alle apparaten garandeert.

Synchroniseren met een atoomklok

Donderdag, december 4th, 2008

Atoomklokken zijn het summum van apparaten voor tijdbewaking. Moderne atoomklokken kunnen de tijd zo nauwkeurig bijhouden dat ze in 100,000,000-jaren (100 miljoen) geen seconde in de tijd verliezen. Vanwege deze hoge nauwkeurigheid zijn atoomklokken de basis voor de tijdschaal van de wereld.

Om mondiale communicatie en tijdgevoelige transacties mogelijk te maken, zoals het kopen van stapels en aandelen, werd een globale tijdschaal ontwikkeld, gebaseerd op de tijd die wordt verteld door atoomklokken, ontwikkeld in 1972. Deze tijdschaal, Coordinated Universal Time (UTC) wordt beheerd en beheerd door de Internationaal Bureau van gewichten en maatregelen (BIPM) die een verzameling van meer dan 230 atoomklokken van 65-laboratoria over de hele wereld gebruiken om een ​​hoge mate van nauwkeurigheid te garanderen.

Atoomklokken zijn gebaseerd op de fundamentele eigenschappen van het atoom, de zogenaamde kwantummechanica. Kwantummechanica suggereert dat een elektron (negatief geladen deeltje) dat om een ​​atoomkern draait zich in verschillende niveaus of baanvlakken kan bevinden, afhankelijk van of ze de juiste hoeveelheid energie absorberen of vrijgeven. Als een elektron voldoende energie heeft geabsorbeerd of vrijgegeven om naar een ander niveau te 'springen', wordt dit een kwantumsprong genoemd.

De frequentie tussen deze twee energietoestanden is wat wordt gebruikt om de tijd te houden. De meeste atoomklokken zijn gebaseerd op het cesiumatoom met 9,192,631,770-stralingsperioden die overeenkomen met de overgang tussen de twee niveaus. Vanwege de nauwkeurigheid van cesiumklokken beschouwt de BIPM nu een tweede om te worden gedefinieerd als 9,192,631,770-cycli van het cesiumatoom.

Atoomklokken worden gebruikt in duizenden verschillende toepassingen waarbij nauwkeurige timing essentieel is. Satellietcommunicatie, luchtverkeersleiding, internethandel en huisartsen vereisen allemaal atoomklokken om de tijd te houden. Atoomklokken kunnen ook worden gebruikt als een methode van het synchroniseren van computernetwerken.

Een computernetwerk met een NTP tijdserver kan een radiotransmissie gebruiken of de signalen die worden uitgezonden door GPS-satellieten (Global Positioning System) als timingbron. Het NTP-programma (of daemon) zorgt er vervolgens voor dat alle apparaten in dat netwerk volgens de tijd van de atoomklok worden gesynchroniseerd met de tijd.

Door een NTP-server gesynchroniseerd met een atoomklok, kan een computernetwerk de identieke gecoördineerde universele tijd uitvoeren als andere netwerken waardoor tijdgevoelige transacties van over de hele wereld kunnen worden uitgevoerd.