Archief voor de 'NTP Basics' Category

Essenties van Traffic Management NTP Server

Donderdag, mei 14th, 2009

Er zijn nu naar verluidt evenveel auto's op de weg als er huishoudens zijn en het duurt slechts een korte reis tijdens het spitsuur om te beseffen dat deze bewering heel waar is.

Congestie is een groot probleem in onze steden en het controleren en beheren van dit verkeer is een van de meest essentiële aspecten van het verminderen van congestie. Veiligheid is ook een punt van zorg op onze wegen, omdat de kans dat al die voertuigen die rondrijden zonder elkaar af en toe te raken bijna nul is, maar het probleem kan worden geïllustreerd door slecht verkeersbeheer.

Als het gaat om het beheersen van de verkeersstromen van onze steden is er geen groter wapen dan het bescheiden verkeerslicht. In sommige steden zijn deze apparaten eenvoudige getimede lichten die het verkeer op de ene manier stoppen en het andere toestaan ​​en vice versa.

Het potentieel van hoe verkeerslichten congestie kunnen verminderen, wordt nu echter gerealiseerd en dankzij de milliseconde synchronisatie die mogelijk is gemaakt met NTP-servers is nu drastisch verminderen van congestie is een aantal van 's werelds grootste steden.

In plaats van eenvoudig getimede segmenten van groen, oranje en rood, kunnen verkeerslichten reageren op de behoeften van de weg, waardoor meer auto's door de ene richting kunnen rijden terwijl ze in andere worden beperkt. Ze kunnen ook in combinatie met elkaar worden gebruikt, waardoor groene lichtdoorgangen voor auto's op hoofdroutes mogelijk zijn.

Dit alles is echter alleen mogelijk als het verkeerslichtsysteem door de hele stad wordt gesynchroniseerd en dat alleen kan worden bereikt met een NTP tijdserver.

NTP (Network Time Protocol) is gewoon een algoritme dat op grote schaal wordt gebruikt voor synchronisatie. EEN NTP-server ontvangt een tijdsignaal van een nauwkeurige bron (normaal gesproken een atoomklok) en de NTP-software verdeelt het vervolgens over alle apparaten in een netwerk (in dit geval de verkeerslichten).

Procedure

U ontvangt een e-mail van STO Garant (info@sto-garant.nl) met informatie over het voldoen van de betaling voor uw boeking. Voor alle boekingen geldt dat het volledige boekingsbedrag voor aanvang van de boeking betaald dient te zijn aan de derdengeldenrekening. NTP-server controleert continu de tijd op elk apparaat en zorgt ervoor dat het overeenkomt met het tijdsignaal, zodat alle apparaten (verkeerslichten) perfect op elkaar worden afgestemd, waardoor het volledige verkeerslichtsysteem kan worden beheerd als een enkelvoudig, flexibel verkeersbeheersysteem in plaats van individuele willekeurige lichten .

De wereld in perfecte synchronisatie

Woensdag, mei 13th, 2009

Synchronisatie is iets dat we elke dag van ons leven kennen. Van het rijden over de snelweg tot het lopen overvolle straat; we passen ons gedrag automatisch aan om te synchroniseren met de mensen om ons heen. We rijden in dezelfde richting of lopen dezelfde wegen als andere pendelaars, omdat het nalaten om dit te doen onze reis een stuk moeilijker (en gevaarlijker) zou maken.

Als het gaat om timing, is synchronisatie nog belangrijker. Zelfs in onze dagelijkse omgang verwachten we een redelijke mate van synchronisatie van mensen. Wanneer een vergadering begint bij 10am, verwachten we dat iedereen er binnen een paar minuten is.

Als het echter gaat om computertransacties via een netwerk, wordt nauwkeurigheid bij synchronisatie nog belangrijker wanneer de nauwkeurigheid tot een paar seconden te laag is en synchronisatie met de milliseconde essentieel wordt.

Computers gebruiken tijd voor elke transactie en het proces dat ze doen en je hoeft alleen nog maar terug te denken aan de furore veroorzaakt door de millenniumbug om de belangrijkheid van de computer op tijd te waarderen. Wanneer er niet precies genoeg synchronisatie is, kunnen allerlei soorten fouten en problemen optreden, met name bij transacties met tijdsgevoelige gegevens.

Het zijn niet alleen transacties die kunnen mislukken zonder adequate synchronisatie, maar tijdstempels worden gebruikt in computerlogbestanden, dus als er iets misgaat of als een kwaadwillende gebruiker binnengevallen is (wat erg gemakkelijk is zonder adequate synchronisatie) kan het lang duren om te ontdekken wat ging er mis en nog langer om de problemen op te lossen.

Een gebrek aan synchronisatie kan ook andere effecten hebben, zoals gegevensverlies of mislukte opvraging. Het kan een bedrijf ook weerloos achterlaten in elk mogelijk juridisch argument, omdat een slecht of niet-gesynchroniseerd netwerk onmogelijk kan worden gecontroleerd.

Milliseconde synchronisatie is echter niet de hoofdpijn die veel beheerders aannemen dat het gaat worden. Velen kiezen ervoor om te profiteren van veel van de online tijdservers die beschikbaar zijn op het internet, maar kunnen daarbij meer problemen genereren dan het oplost, zoals het openlaten van de UDP-poort in de firewall (om de timinginformatie door te laten), niet- om te vermelden geen gegarandeerd niveau van nauwkeurigheid van de openbare tijdserver.

Een betere en eenvoudigere oplossing is om een ​​toegewijde te gebruiken netwerktijdserver die het protocol gebruikt NTP (Network Time Protocol). EEN NTP tijdserver zal rechtstreeks op een netwerk aansluiten en het GPS (Global Positioning System) of gespecialiseerde radio-uitzendingen gebruiken om de tijd direct vanaf een atoomklok te ontvangen en deze over het netwerk te verdelen.

Wat is de beste bron van UTC-tijd?

Zondag, mei 3rd, 2009

UTC (Coordinated Universal Time) is de wereldwijde tijdschaal van de wereld en vervangt de oude tijdstandaard GMT (Greenwich Meantime) in de 1970's.

Hoewel GMT was gebaseerd op de beweging van de zon, is UTC gebaseerd op de tijd die wordt verteld door atoomklokken hoewel het in lijn met GMT wordt gehouden door de toevoeging van 'Leap Seconds' die de vertraging van de rotatie van de aarde compenseert, waardoor zowel UTC als GMT naast elkaar kunnen lopen (GMT wordt vaak ten onrechte aangeduid als UTC - hoewel er geen echte verschil maakt het niet echt uit).

Bij computers kan UTC computernetwerken over de hele wereld synchroniseren om tijdgevoelige transacties van over de hele wereld mogelijk te maken. De meeste computernetwerken worden gebruikt netwerk tijdservers om te synchroniseren met een UTC-tijdbron. Deze apparaten gebruiken het protocol NTP (Network Time Protocol) om de tijd over de netwerken te verdelen en controleren voortdurend of er geen afwijking is.

Het enige dilemma in het gebruik van een toegewijde NTP tijdserver is het selecteren waar de tijdbron vandaan komt die het type regelen NTP-server u heeft nodig. Er zijn echt drie plaatsen waar een bron van UTC-tijd gemakkelijk kan worden gevonden.

De eerste is internet. Bij het gebruik van een internettijdbron zoals time.nist.gov of time.windows.com een ​​speciale NTP-server is niet noodzakelijk vereist omdat op de meeste besturingssystemen al een versie van NTP is geïnstalleerd (dubbelklik in Windows op het klokpictogram om de internettijdopties te zien).

*NB: Microsoft, Novell en anderen raden ten sterkste af om internettijdbronnen te gebruiken als beveiliging een probleem is. Internettijdbronnen kunnen niet worden geverifieerd door NTP en bevinden zich buiten de firewall, wat kan leiden tot beveiligingsrisico's.

De tweede methode is om een ​​te gebruiken GPS NTP-server; deze apparaten maken gebruik van het GPS-signaal (meestal gebruikt voor satellietnavigatie), wat eigenlijk een tijdcode is die wordt gegenereerd door een atoomklok (vanaf de satelliet). Terwijl dit signaal overal ter wereld beschikbaar is, heeft een GPS-antenne een duidelijk zicht op de hemel nodig, wat het enige nadeel is van het gebruik van GPS.

Als alternatief kunnen de nationale natuurkundige laboratoria van veel landen, zoals NIST in de VS en NPL in het Verenigd Koninkrijk, verzendt u een tijdsignaal van hun atoomklokken. Deze signalen kunnen worden opgevraagd met een radio waarnaar wordt verwezen NTP-server hoewel deze signalen eindig en kwetsbaar zijn voor lokale interferentie en topografie.

Hoe een computer te synchroniseren met een atoomklok

Vrijdag, mei 1st, 2009

Tijdsynchronisatie is vaak een veel onderschat aspect van computerbeheer. Over het algemeen is tijdsynchronisatie alleen cruciaal voor netwerken of voor computers die in de loop van de tijd gevoelige transacties over het internet in beslag nemen.

Tijdsynchronisatie met moderne besturingssystemen zoals Windows Vista, XP of de verschillende versies van Linux is relatief eenvoudig omdat de meeste het tijdsynchronisatieprotocol NTP (Network Time Protocol) of ten minste een vereenvoudigde versie (SNTP) bevatten.

NTP is een op algoritmen gebaseerd programma en werkt met behulp van een enkele tijdbron die kan worden gedistribueerd over het netwerk (of een enkele computer) en wordt voortdurend gecontroleerd om te verzekeren dat de klokken van het netwerk nauwkeurig worden uitgevoerd.

Voor gebruikers van een enkele computer of netwerken waar veiligheid en precisie geen primaire aandachtspunten zijn (hoewel voor elke netwerkbeveiliging een hoofdaangelegenheid moet zijn), is de eenvoudigste manier om een ​​computer te synchroniseren een internettijdstandaard te gebruiken.

Met een Windows-besturingssysteem kan dit eenvoudig op één computer worden gedaan door dubbel op het klokpictogram te klikken en vervolgens het tabblad internettijd te configureren. Er moet echter worden opgemerkt dat bij gebruik van een op internet gebaseerde tijdbron, zoals nist.gov of windows.time, een poort in de firewall open moet worden gelaten waar kwaadwillende gebruikers misbruik van kunnen maken.

Voor netwerkgebruikers en gebruikers die geen kwetsbaarheden in hun firewall willen achterlaten, is de meest geschikte oplossing het gebruik van een speciale netwerktijdserver. De meeste van deze apparaten gebruiken ook het protocol NTP, maar omdat ze extern een tijdreferentie ontvangen van het netwerk (meestal via GPS of langegolfradio), laten ze geen kwetsbaarheden in de firewall achter.

Deze NTP-server apparaten zijn ook veel betrouwbaarder en nauwkeuriger dan internettijdbronnen omdat ze rechtstreeks communiceren met het signaal van een atoomklok in plaats van meerdere lagen te zijn (in NTP-termen bekend als strata) van de referentieklok zoals de meeste internettijdbronnen dat zijn.

GPS-tijdserver en de nauwkeurigheid ervan vanuit de ruimte

Dinsdag, april 28th, 2009

Het GPS-netwerk (Global Positioning System) is algemeen bekend als een satellietnavigatiesysteem. Het geeft echter een ultra-nauwkeurig tijdsignaal door van een ingebouwde atoomklok.

Het is deze informatie die wordt ontvangen door satellietnavigatieapparatuur die vervolgens de positie van de ontvanger kan trianguleren door uit te werken hoe lang het signaal is afgelegd om aan te komen van verschillende satellieten.

Deze tijdsignalen, zoals alle radiosignalen, reizen met de snelheid van het licht (wat een seconde dichter bij 300,000km ligt). Het is daarom zeer belangrijk dat deze apparaten niet alleen nauwkeurig zijn tot een seconde maar tot een miljoenste van een seconde anders zou het navigatiesysteem nutteloos zijn.

Het is deze timinginformatie die kan worden gebruikt door een GPS-tijd-server als basis voor netwerktijd. Hoewel deze timinginformatie niet in een UTC-indeling (Coordinated Universal Time) staat, de wereldwijde tijdschaal van de wereld, kan deze eenvoudig worden geconverteerd vanwege de oorsprong van een atoomklok.

A GPS-tijd-server kan het signaal van een GPS-antenne ontvangen, hoewel dit een goed zicht op de lucht nodig heeft, omdat de satellieten hun uitzendingen via gezichtslijn doorgeven.
Een toegewijde gebruiken GPS-tijd-server een computernetwerk kan binnen enkele milliseconden van NTP worden gesynchroniseerd (milli = 1000th van een seconde) en zorgen voor beveiliging en authenticatie.

Na het toenemende gebruik van GPS-technologie in de afgelopen paar jaar, zijn GPS-tijdservers nu relatief goedkoop en zijn eenvoudige en ongecompliceerde systemen om te installeren.

Galileo en de GPS NTP-server

Donderdag, april 23rd, 2009

Op dit moment is er slechts één Global Navigation Satellite System (GNSS) de NAVSTAR GPS die sinds de late 1980's open is voor civiel gebruik.

Meestal, de GPS-systeem wordt verondersteld om navigatie-informatie te verschaffen waarmee bestuurders, matrozen en piloten hun positie waar ook ter wereld kunnen bepalen.

In feite is de enige informatie die wordt gestraald door een GPS-satelliet de tijd die wordt gegenereerd door de interne atoomklok van de satellieten. Dit tijdsignaal is zo nauwkeurig dat een GPS-ontvanger het signaal van drie satellieten kan gebruiken en de locatie binnen een paar meter kan lokaliseren door uit te zoeken hoe lang elk precies signaal moest aankomen.

Momenteel a GPS NTP-server kan deze timinginformatie gebruiken om volledige computernetwerken te synchroniseren tot een nauwkeurigheid van enkele milliseconden.

De Europese Unie werkt momenteel echter aan het eigen wereldwijde satellietnavigatiesysteem Galileo, dat het GPS-netwerk zal evenaren door zijn eigen timing- en plaatsingsinformatie te verstrekken.

De Galileo is echter ontworpen om samen te werken met GPS, wat betekent dat een huidige GPS NTP-server zal beide signalen kunnen ontvangen, hoewel sommige softwareaanpassingen mogelijk moeten worden doorgevoerd.

Deze interoperabiliteit zorgt voor meer nauwkeurigheid en kan nationale tijd- en frequentie radio-uitzendingen overbodig maken omdat ze niet in staat zullen zijn om een ​​vergelijkbare nauwkeurigheid te produceren.

Verder zijn Rusland, China en India momenteel hun eigen GNSS-systemen aan het plannen, wat misschien nog meer nauwkeurigheid oplevert. GPS heeft al een revolutie teweeggebracht in de manier waarop de wereld werkt, niet alleen door een nauwkeurige positionering toe te staan, maar ook de hele wereld in staat te stellen om met dezelfde tijdschaal te synchroniseren met behulp van een GPS NTP-server. De verwachting is dat er nog meer technologische vooruitgang zal zijn als de volgende generatie GNSS met hun transmissies begint.

Atomic Clocks Explained

Maandag april 20th, 2009

Is een Atoomklok radioactief?

An atoomklok houdt de tijd beter dan elke andere klok. Ze houden zelfs de tijd beter dan de rotatie van de aarde en de beweging van de sterren. Zonder de atoomklok zou GPS-navigatie onmogelijk zijn, zou het internet niet synchroniseren en zou de positie van de planeten niet voldoende nauwkeurig bekend zijn om ruimtesondes en landers te lanceren en te bewaken.

Een atoomklok is niet radioactief, hij is niet afhankelijk van atoomverval. Integendeel, een atoomklok heeft een oscillerende massa en een veer, net als gewone klokken.

Het grote verschil tussen een standaardklok in je huis en een atoomklok is dat de oscillatie in een atoomklok zich tussen de kern van een atoom en de omringende elektronen bevindt. Deze oscillatie is niet precies een parallel met het balanswiel en de veer van een uurwerkhorloge, maar feit is dat beide oscillaties gebruiken om de tijd die voorbijgaat te volgen. De oscillatiefrequenties binnen het atoom worden bepaald door de massa van de kern en de zwaartekracht en elektrostatische "veer" tussen de positieve lading op de kern en de elektronenwolk eromheen.

Wat zijn de soorten atoomklokken?

Tegenwoordig, hoewel er verschillende soorten atoomklokken zijn, blijft het principe achter al deze hetzelfde. Het grootste verschil houdt verband met het gebruikte element en de middelen om te detecteren wanneer het energieniveau verandert. De verschillende soorten atoomklok omvatten:

De Cesium-atoomklok maakt gebruik van een straal cesiumatomen. De klok scheidt cesiumatomen van verschillende energieniveaus door een magnetisch veld.

De waterstof-atoomklok handhaaft waterstofatomen op het vereiste energieniveau in een container met wanden van een speciaal materiaal, zodat de atomen hun hogere energietoestand niet te snel verliezen.

De atoomklok van Rubidium, de eenvoudigste en meest compacte van allemaal, gebruikt een glazen cel van rubidiumgas die de absorptie van licht op de optische rubidium-frequentie verandert wanneer de omringende microgolffrequentie precies goed is.

De meest nauwkeurige commerciële atoomklok die vandaag beschikbaar is, maakt gebruik van het cesiumatoom en de normale magnetische velden en detectoren. Bovendien worden de cesiumatomen gestopt door heen en weer te zwaaien met laserstralen, waardoor kleine veranderingen in frequentie als gevolg van het Doppler-effect worden verminderd.

Wanneer was de atoomklok uitgevonden? atoomklok

In 1945 suggereerde fysica professor Isidor Rabi in Columbia dat een klok gemaakt kon worden van een techniek die hij ontwikkelde in de 1930s, atomaire bundel magnetische resonantie genaamd. Door 1949, het National Bureau of Standards (NBS, nu het National Institute of Standards and Technology, NIST) kondigde 's werelds eerste atoomklok aan met behulp van het ammoniakmolecuul als de bron van trillingen, en met 1952 kondigde het de eerste atoomklok aan met cesiumatomen als de trillingsbron, NBS-1.

In 1955, het Nationaal Fysisch Laboratorium (NPL) in Engeland heeft de eerste cesiumbundel-atoomklok gebruikt als kalibratiebron. In het volgende decennium werden meer geavanceerde vormen van de atoomklokken gecreëerd. In 1967 definieerde de 13e Algemene Conferentie over Gewichten en Maatregelen de SI-seconde op basis van trillingen van het cesiumatoom; 's werelds tijdregistratiesysteem had op dat moment geen astronomische basis meer! NBS-4, 's werelds meest stabiele cesium-atoomklok, werd voltooid in 1968 en werd in de 1990s gebruikt als onderdeel van het NPL-tijdsysteem.

In 1999 begon NPL-F1 te werken met een onzekerheid van 1.7-onderdelen in 10 tot de 15th-macht, of nauwkeurigheid tot ongeveer één seconde in 20 miljoen jaar, waardoor dit de meest accurate atoomklok ooit is gemaakt (een onderscheid dat in een vergelijkbare standaard wordt gedeeld in Parijs).

Hoe wordt Atoomkloktijd gemeten?

De juiste frequentie voor de specifieke cesiumresonantie wordt nu door internationale overeenstemming gedefinieerd als 9,192,631,770 Hz, zodat wanneer deze wordt gedeeld door dit aantal, de uitvoer exact 1 Hz of 1-cyclus per seconde is.

De nauwkeurigheid op lange termijn die haalbaar is met de moderne cesium-atoomklok (het meest gebruikelijke type) is beter dan één seconde per miljoen jaar. De atoomklok van waterstof vertoont een betere nauwkeurigheid op korte termijn (één week), bij benadering 10 maal de nauwkeurigheid van een cesium-atoomklok. Daarom heeft de atoomklok de nauwkeurigheid van tijdmeting ongeveer een miljoen keer verhoogd in vergelijking met de metingen die zijn uitgevoerd met behulp van astronomische technieken.

Synchroniseren met een atoomklok

De eenvoudigste manier om te synchroniseren met een atoomklok is om a te gebruiken speciale NTP-server. Deze apparaten ontvangen het GPS-ataomische kloksignaal of radiogolven van plaatsen zoals NIST of NPL.

Soorten Atomic Clock-ontvangers

Zaterdag april 18th, 2009

MSF-atoomklokontvanger

Het besturende radiosignaal voor de National Physical LaboratoryDe atoomklok wordt verzonden op het MSF 60kHz-signaal via de zender op, CumbriaAnthorn, geëxploiteerd door British Telecom. Dit radio-atoomkloksignaal moet een bereik hebben van enkele 1,500 km of 937.5 mijlen. Alle Britse eilanden zijn natuurlijk binnen deze straal.
De rol van het Nationaal Fysisch Laboratorium als bewaarder van de nationale tijdstandaarden is ervoor te zorgen dat de Britse tijdschaal het eens is met de gecoördineerde universele tijd (UTC) tot het hoogste niveau van nauwkeurigheid en om die tijd beschikbaar te maken in het VK. Als voorbeeld, de MSF (AZG is de drieletterige roepnaam om de bron van het signaal te identificeren) radio-uitzending levert het tijdsignaal voor, elektronische handel in aandelen, de klokken op de meeste treinstations en voor BT's spreekklok.

DCF-atoomklok ontvanger

Het besturende radiosignaal voor de Duitse klok wordt uitgezonden via lange golf van de DCF 77kHz-zender in Mainflinger, nabij Dieburg, enkele 25 km ten zuidoosten van Frankfurt - de zender van Duitse nationale tijdsnormen. Het is vergelijkbaar in gebruik met de Cumbria-zender, maar er zijn twee antennes (radiomasten), zodat het tijd-signaal van de radio-atoomklok te allen tijde kan worden gehandhaafd.

Lange golf is de geprefereerde radiofrequentie voor het verzenden van radio-atoomkloktijdcode binaire signalen, aangezien deze het meest consequent presteert in het stabiele onderste deel van de ionosfeer. Dit komt omdat het lange golfsignaal dat de tijdcode naar uw uurwerk draagt, op twee manieren reist; direct en indirect. Tussen 700 km (437.5 mijl) tot 900 km (562.5 mijl) van elke zender kan de draaggolf rechtstreeks naar het uurwerk reizen. Het radiosignaal bereikt ook het uurwerk door te worden teruggekaatst van de onderkant van de ionosfeer. Tijdens de uren van daglicht is een deel van de ionosfeer genaamd de "D-laag" op een hoogte van sommige 70 km (43.75 mijl) verantwoordelijk voor het weergeven van het lange golf radiosignaal. Tijdens de uren van duisternis wanneer de straling van de zon niet van buiten de atmosfeer werkt, stijgt deze laag naar een hoogte van sommige 90 km (56.25 mijl) en wordt de "E-laag" in het proces. Simpele trigonometrie zal aantonen dat aldus weerspiegelde signalen verder zullen reizen.

Een groot deel van het gebied van de Europese Unie wordt gedekt door deze zender die de ontvangst vergemakkelijkt voor degenen die veel reizen in Europa. De Duitse klok is ingesteld op Midden-Europese tijd - een uur vóór de Britse tijd, na een intergouvernementele beslissing, van 22N oktober, 1995, zal de tijd in het VK altijd 1 uur minder zijn dan Europese tijd, met zowel het VK als het vasteland van Europa. en het vertragen van klokken op hetzelfde "tijdstip".

WVVB atomic clock ontvanger

Een radio-atoomkloksysteem is beschikbaar in Noord-Amerika, opgezet en geëxploiteerd door NIST - het National Institute of Standards and Technology, gevestigd in Fort Collins, Colorado.

WWVB heeft een hoog zendvermogen (50,000 watt), een zeer efficiënte antenne en een extreem lage frequentie (60,000 Hz). Ter vergelijking, een typisch AM-radiostation zendt uit met een frequentie van 1,000,000 Hz. De combinatie van hoog vermogen en lage frequentie geeft de radiogolven van MSF veel veerkracht, en dit enkele station kan daarom de hele continentale Verenigde Staten bestrijken, plus een groot deel van Canada en Midden-Amerika.

Procedure

U ontvangt een e-mail van STO Garant (info@sto-garant.nl) met informatie over het voldoen van de betaling voor uw boeking. Voor alle boekingen geldt dat het volledige boekingsbedrag voor aanvang van de boeking betaald dient te zijn aan de derdengeldenrekening. radio atoomklok tijdcodes worden verzonden vanaf WWVB met behulp van een van de eenvoudigste systemen mogelijk, en tegen een zeer lage gegevenssnelheid van één bit per seconde. Het 60,000 Hz-signaal wordt altijd verzonden, maar elke seconde wordt het aanzienlijk minder energie gedurende een periode van 0.2-, 0.5- of 0.8-seconden:

• 0.2 seconden met verminderd vermogen betekent een binaire nulwaarde • 0.5 seconden met verminderd vermogen is een binaire nul. • 0.8 seconden met verminderd vermogen is een scheidingsteken.

De tijdcode wordt verzonden in BCD (Binary Coded Decimal) en geeft minuten, uren, dag van het jaar en jaar aan, samen met informatie over zomertijd en schrikkeljaren. De tijd wordt verzonden met behulp van 53-bits en 7-scheidingstekens en duurt daarom 60 seconden om te verzenden.

Een klok of horloge kan een extreem kleine en relatief eenvoudige radio-atoomklokantenne en ontvanger bevatten om de informatie in het signaal te decoderen en de atoomkloktijd nauwkeurig in te stellen. Het enige dat u hoeft te doen, is de tijdzone instellen en de atoomklok geeft de juiste tijd weer.

Functies van Network Time Protocol

Donderdag, april 16th, 2009

NTP is afhankelijk van een referentieklok en alle klokken op de NTP-netwerk zijn gesynchroniseerd met die tijd. Het is daarom absoluut noodzakelijk dat de referentieklok zo nauwkeurig mogelijk is. De meest nauwkeurige uurwerken zijn atoomklokken. Deze grote physics lab-apparaten kunnen over miljoenen jaren een nauwkeurige tijd bijhouden zonder een seconde te verliezen.

An NTP-server ontvangt de tijd vanaf een atoomklok, hetzij via internet, via het GPS-netwerk of via radiosignalen. Bij het gebruik van een atoomklok als referentie zal een NTP-netwerk nauwkeurig zijn tot op een paar milliseconden van de wereldwijde tijdschaal van de wereld. GMT (Coordinated Universal Time).

NTP is een hiërarchisch systeem. Hoe dichter een apparaat bij de referentieklok zit, hoe hoger bij de NTP-strata. Een atoomklokreferentieklok is een stratum 0-apparaat en een NTP-server die de tijd ervan ontvangt is een stratum 1-apparaat, clients van de NTP-server zijn stratum 2-apparaten, enzovoort.

Vanwege dit hiërarchische systeem kunnen apparaten die zich in de lagen bevinden, ook worden gebruikt als een referentie waarmee grote netwerken kunnen werken terwijl ze met slechts één verbinding zijn verbonden NTP tijdserver.

NTP is een protocol dat fouttolerant is. NTP bewaakt fouten en kan meerdere tijdbronnen verwerken en het protocol selecteert automatisch het beste. Zelfs wanneer een referentieklok tijdelijk niet beschikbaar is, kan NTP eerdere metingen gebruiken om de huidige tijd in te schatten ..

De tijd vinden

Dinsdag, april 14th, 2009

Uitzoeken wat de tijd is, is iets dat we allemaal als vanzelfsprekend beschouwen. Klokken zijn overal en een blik op een polshorloge, een klokkentoren, een computerscherm of zelfs een magnetron vertelt ons hoe laat het is. Het was echter niet altijd gemakkelijk om de tijd te vertellen.

Klokken kwamen pas in de middeleeuwen aan en hun nauwkeurigheid was ongelooflijk slecht. Ware tijd om nauwkeurigheid te vertellen kwam pas na de komst van de elektronische klok in de negentiende eeuw. Veel van de moderne technologieën en toepassingen die we in de moderne wereld als vanzelfsprekend beschouwen, zoals satellietnavigatie, luchtverkeersleiding en handel via het internet, vereisen echter een precisie en nauwkeurigheid die een elektronische klok ver overschrijdt.

Atoomklokken zijn verreweg de meest nauwkeurige tijdrovende apparaten. Ze zijn zo nauwkeurig dat de wereldwijde tijdschaal van de wereld die daarop is gebaseerd (Coordinated Universal Time) moet af en toe worden aangepast om rekening te houden met de vertraging van de rotatie van de aarde. Deze aanpassingen nemen de vorm aan van extra seconden die we leapseconden noemen.

Atoomkloknauwkeurigheid is zo nauwkeurig dat zelfs een seconde tijd niet verloren gaat in meer dan een miljoen jaar, terwijl een elektronische klok in vergelijking een seconde in een week zal verliezen.

Maar is deze nauwkeurigheid echt nodig? Wanneer je kijkt naar technologieën zoals global positioning, dan is het antwoord ja. Satellietnavigatiesystemen zoals GPS werken door triangulatie van tijdsignalen gegenereerd door atoomklokken aan boord van de satellieten. Omdat deze signalen met de snelheid van het licht worden uitgezonden, reizen ze elke seconde bijna 100,000 km. Elke onnauwkeurigheid in de klok met zelfs een duizendste van een seconde zou de positioneringsinformatie in kilometers kunnen zien.

Computernetwerken die over de hele wereld met elkaar moeten communiceren, moeten ervoor zorgen dat ze niet alleen nauwkeurige tijd draaien, maar ook met elkaar zijn gesynchroniseerd. Alle transacties die worden uitgevoerd op netwerken zonder synchronisatie kunnen leiden tot allerlei soorten fouten.

Fort zijn reden dat computernetwerken gebruiken NTP (Network Time Protocol) en netwerk tijdservers vaak aangeduid als een NTP-server. Deze apparaten ontvangen een tijdsignaal van een atoomklok en verdelen dit onder een netwerk, zodat een netwerk zo nauwkeurig en nauwkeurig mogelijk is.